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ABSTRACT
Video-text retrieval is an important yet challenging task in vision-
language understanding, which aims to learn a joint embedding
space where related video and text instances are close to each other.
Most current works simply measure the video-text similarity based
on video-level and text-level embeddings. However, the neglect
of more fine-grained or local information causes the problem of
insufficient representation. Some works exploit the local details by
disentangling sentences, but overlook the corresponding videos,
causing the asymmetry of video-text representation. To address
the above limitations, we propose a Hierarchical Alignment Net-
work (HANet) to align different level representations for video-text
matching. Specifically, we first decompose video and text into three
semantic levels, namely event (video and text), action (motion and
verb), and entity (appearance and noun). Based on these, we natu-
rally construct hierarchical representations in the individual-local-
global manner, where the individual level focuses on the alignment
between frame and word, local level focuses on the alignment be-
tween video clip and textual context, and global level focuses on
the alignment between the whole video and text. Different level
alignments capture fine-to-coarse correlations between video and
text, as well as take the advantage of the complementary informa-
tion among three semantic levels. Besides, our HANet is also richly
interpretable by explicitly learning key semantic concepts. Exten-
sive experiments on two public datasets, namely MSR-VTT and
VATEX, show the proposed HANet outperforms other state-of-the-
art methods, which demonstrates the effectiveness of hierarchical
representation and alignment. Our code is publicly available at
https://github.com/Roc-Ng/HANet.

CCS CONCEPTS
• Information systems→Video search; •Computingmethod-
ologies→ Neural networks.
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1 INTRODUCTION
“Hey, Siri, I want to watch a video of fighting in the desert.” Re-
cently, cross-modal retrieval has attracted increasing attention due
to the explosive growth of online videos and advances in artificial
intelligence technology. In addition to speech recognition, video-
text retrieval is a key technique in the above scenario, which aims
to search related videos given a natural-language sentence as the
query. This task is challenging since the video and text are two
different modalities, how to encode and match them in the joint
space is the key.

Many efforts to make a reliable and accurate video-text retrieval
system have been done. Recently, a typical practice is to encode
videos and texts into compact representations and measure their
similarities in a joint latent common space using metric learning.
In this case, most existing works [8, 11, 22, 29] focus on how to
learn global representations of videos and texts, and achieve this
goal by leverage various embedding networks, e.g., convolutional
neural networks (CNN), gated recurrent units (GRU), Transformer,
Bidirectional Encoder Representations from Transformers (BERT).
However, such compact global representations neglect the more
fine-grained or local information that existed in videos and texts,
which may cause the problem of insufficient representation.

To mitigate this problem, some other works utilize local seman-
tic information for fine-grained video-text retrieval. For example,
Wray et al. [41] break the sentence into nouns and verbs using part-
of-speech (pos) parsing and operate multiple cross-modal matching.
Chen et al. [4] make further efforts for fine-grained retrieval by
exploiting semantic alignments for both global event and local ac-
tion and entity through hierarchical graph reasoning. Nevertheless,
video-text retrieval is a cross-modal task, these methods only focus
on text parsing, yet overlook video parsing, causing the asymmetry
of video-text representation. Therefore, simultaneously parsing text
and video is a more general solution.

To address the above issues, we propose the hierarchical align-
ment network (HANet), which aims to simultaneously parse text
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Figure 1: Illustration of the hierarchical alignment. The in-
dividual level focuses on the alignment between frame and
word, local level focuses on the alignment between video
clip and textual context,and global level focuses on the align-
ment between the whole video and text.

and video into different semantic levels, and then generates individual-
, local- and global-level representations, finally hierarchically aligns
different level representations in separate joint spaces. We illustrate
the hierarchical alignment in Figure 1. The contributions of this
paper are as follows:

• Multi-semantic-level representation is proposed to si-
multaneously parse videos and texts into different semantic
levels, i.e. event-level on the whole video and text, action-
and entity-level on the parsing parts of video and text, where
we subtly parse videos by means of concept-based classifi-
cation under weak supervision without other complicated
steps. Here, the concept is from predefined concept vocab-
ularies which drive the model to learn the detailed compo-
nents in video and text, so that the cross-modal associations
between video frames and keywords could be established
via concepts, which makes our model more interpretable.
• HierarchicalAlignment is proposed for cross-modalmatch-
ing on top of multi-semantic-level representation. The in-
dividual level focuses on the alignment between frame and
word on the concept-specific prediction features, local level
focuses on the alignment between video clip and textual
context, and global level focuses on the alignment between
the whole video and text. Different level alignments not only
capture fine-to-coarse correlations between videos and texts,
but also take the advantage of the complementary informa-
tion among three semantic levels.

We show the superiority of our HANet on two popular video-
text retrieval datasets, i.e., MSR-VTT, VATEX. Without additional
features and pre-training, HANet achieves clear performance im-
provements over state-of-the-art methods.

2 RELATEDWORK
2.1 Video-Text Retrieval
Video-text retrieval is a non-trivial branch of cross-modal retrieval
[3, 13, 15, 21, 27, 31, 36, 40, 46]. The typical methods can be divided
into three components, namely, text encoding, video encoding, and
joint space learning. Recently, many works focus on designing
powerful text and video encoding. For example, Dong et al. [8]
proposed multi-level encodings of video and text in advance to
learning shared representations. Li et al. [22] concatenated the
bag-of-words vector, word2vec embedding, and Recurrent neural
networks (RNN) vector as the final text representations. Similarly,
Li et al. [23] incorporated several sentence encoders and measured
similarities in multiple encoder-specific common spaces rather than
a single common space. Some works [12, 25, 28] made full use of
multimodal cues, e.g., motion, appearance, face, OCR, for video
encoding. Other works attempted to decompose texts into some
semantic phrases. Yang et al. [48] constructed a latent semantic tree
to describe the text and used a temporal attentive encoder to obtain
the temporal-attentive video representation. Xu et al. [47] proposed
a compositional semantics language model to parse the sentence
into Subject-Verb-Object structure. Wray et al. [41] disentangled
sentences into verbs and nouns for fine-grained video retrieval, and
Chen et al. [4] disentangled texts into events, actions and entities.
The above two methods are similar to ours, but they overlook
disentangling videos and developing interpretability. Another two
works [24, 50] are also hierarchical models, however, the method
in [50] is not applicable to decompose single sentences, and the
hierarchical transformer in [24] only focus on global features.

As for joint space learning, Chen et al. [2] designed a new rank-
ing loss that assigns weights to the relative similarities between
positive and negative pairs. An analogous work [39] introduced
a new polynomial loss with the universal weighting framework.
With the help of these new losses, traditional methods achieve clear
performance improvements.

2.2 Cross-modal Concept Learning
In the last few years, cross-modal concept learning is usually uti-
lized for a new challenge in TRECVID, i.e., Ad-hoc Video Search
(AVS). The majority of the top-ranked solutions [19, 26, 30, 37]
for AVS focused on computing the similarity between a textual
query and a specific video via concepts. In terms of video, con-
structing visual concept classifier to detect concepts; In terms of
text, designing complex linguistic rules to extract relevant concepts.
The merit of these concept-based AVS methods is the good inter-
pretability, but the weakness is that using predefined concepts to
describe videos and texts is insufficient. Recently, two hybrid works
[9, 42] employed both concept-based and concept-free strategies
and achieved better performance. Similar to them, Our HANet is
also considered as a hybrid model. Another interesting work [49]
proposed a high-level concept word detector to generates a series
of concept words as useful semantic priors for cross-modal tasks.

3 HANET
We propose the hierarchical alignment network (HANet) for video-
text retrieval, whose goal is to hierarchically align different level of
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Figure 2: Framework of the proposed Hierarchical Alignment Network (HANet).

video-text features and measure the similarity in different common
spaces. The overview of HANet is illustrated in Figure 2, which
consists of four components: 1) Video-text parsing (Section 3.1), i.e.,
parsing video and text with video-specific and text-specific parse
manners respectively. 2) Video representations (Section 3.2), i.e.,
constructing frame, clip and video levels of features on the basis of
video parsing. 3) Text representations (Section 3.3), i.e., construct-
ing word, phrase, and sentence levels of features on the basis of
text parsing. 4) Hierarchical alignment (Section 3.4), i.e., aligning
different semantic levels of video and text representations to com-
pute their similarity. Finally, training and inference are introduced
in Section 3.5.

3.1 Video-Text Parsing
Given a video 𝑉 of length 𝑁 and its corresponding caption 𝑆 of
length 𝑀 , we expect that not only global representations of the
video and text are close in their common space, but also more fine-
grained representations should be close. To achieve this goal, we
first parse the video and text.

3.1.1 Video Parsing. Unlike text parsing, video parsing is chal-
lenging since videos are more complicated but lacking the distinct
semantic structure than texts. A possible way to video parsing is to
introduce some existing vision operations, such as temporal seg-
mentation, object detection, tracking, which are time-consuming
and complex for practice application. To address this issue, we
propose to project video frames into the concept space with the
predefined concept vocabulary, where each frame is explicitly asso-
ciated with the specific concepts. That is, we establish cross-modal
associations between video frames (or clips) with key words (such
as nouns and verbs) via concepts.

Formally, given the predefined action concept vocabulary of size
𝐾𝑎 , we project the corresponding action feature map 𝑣𝐼𝑛𝑑𝑎 ∈ R𝑁×𝐷𝑣

of video into the 𝐾𝑎 dimensional action concept space using CNN.

Likewise, we adopt another CNN to project entity feature map
𝑣𝐼𝑛𝑑𝑒 ∈ R𝑁×𝐷𝑣 into the 𝐾𝑒 dimensional entity concept space. That
is,

𝑙𝑣𝑎 = 𝜎

(
𝐵𝑁

(
𝐶𝑜𝑛𝑣1𝑑𝑘=5

(
𝑣𝐼𝑛𝑑𝑎

)))
(1)

𝑙𝑣𝑒 = 𝜎

(
𝐵𝑁

(
𝐶𝑜𝑛𝑣1𝑑

(
𝑣𝐼𝑛𝑑𝑒

)))
(2)

where 𝑙𝑣𝑎 ∈ R𝑁×𝐾𝑎 and 𝑙𝑣𝑒 ∈ R𝑁×𝐾𝑒 are denoted as the confidence
for action and entity concepts, respectively. 𝜎 is the sigmoid activa-
tion, 𝐵𝑁 is the batch normalization. The detailed descriptions of
𝑣𝐼𝑛𝑑𝑎 and 𝑣𝐼𝑛𝑑𝑒 can be referred to Section 3.2. It is worth mentioning
that we employ the convolution layer with kernel size of 𝑘 = 5 to
obtain the probabilistic output of action concept, which is to capture
the intrinsic motion information in continuous video frames.

3.1.2 Text Parsing. Following the prior work [4], we employ the off-
the-shelf semantic role parsing toolkit [35] to obtain verbs, nouns
as well as the semantic role of each noun to the corresponding verb.
We refer the reader to [4, 35] for detailed descriptions. Here, verbs
are considered as actions, likewise, nouns are entities. Then, we
project sentence words into the action and entity concepts, and
their confidences are obtained as follows,

𝑙𝑠𝑎 = 𝜎

(
𝐵𝑁

(
𝐶𝑜𝑛𝑣1𝑑

(
𝑠𝐼𝑛𝑑𝑎

)))
(3)

𝑙𝑠𝑒 = 𝜎

(
𝐵𝑁

(
𝐶𝑜𝑛𝑣1𝑑

(
𝑠𝐼𝑛𝑑𝑒

)))
(4)

where 𝑙𝑠𝑎 ∈ R𝑀×𝐾𝑎 and 𝑙𝑠𝑒 ∈ R𝑀×𝐾𝑒 are denoted as the confidence
for action and entity concepts, respectively. The detailed descrip-
tions of 𝑠𝐼𝑛𝑑𝑎 and 𝑠𝐼𝑛𝑑𝑒 can be referred to Section 3.3.

Video-text parsing introduces a new concept-based match space
between videos and texts on action and entity concept-level. In this
way, good interpretability is also introduced.
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3.2 Video Representations
We design three different granularities of representations, namely
individual, local and global, corresponding to the video frame, video
clip, and whole video respectively, which capture fine-to-coarse
information and are complementary to each other.

3.2.1 Individual-level Representation. Formally, given the video 𝑉 ,
we first use the pre-trained CNN to extract frame-level features 𝐹 𝑣 =
{𝑓 𝑣
𝑖
}𝑁 . Following [4], we then employ different fully connected (FC)

layers to encode the video into three semantic-level embeddings as
follows:

𝑣𝐼𝑛𝑑𝑥 = 𝐹𝐶
(
𝐹 𝑣

)
, 𝑥 ∈ {𝑎, 𝑒, 𝑔} (5)

where 𝑣𝐼𝑛𝑑𝑥 ∈ R𝑁×𝐷𝑣 . Since 𝑣𝐼𝑛𝑑𝑎 and 𝑣𝐼𝑛𝑑𝑒 only contain frame-
level information, here, they are considered as individual-level
representations. 𝑣𝐼𝑛𝑑𝑔 is used for the global-level representation in
the later section.

3.2.2 Local-level Representation. To further explore the contextual
information between frames, we propose a Selecting and Merging
(SeMe) module to generate the local-level representation. The SeMe
module takes individual-level representation as input, and outputs
concept confidence. To extract more high-level representation, we
employ a convolution layer to project 𝑣𝐼𝑛𝑑𝑎 and 𝑣𝐼𝑛𝑑𝑒 into another
spaces. That is,

𝑣𝑆𝐸𝑎 = 𝑆𝐸

(
𝑣𝐼𝑛𝑑𝑎

)
(6)

𝑣𝑆𝐸𝑒 = 𝑆𝐸

(
𝑣𝐼𝑛𝑑𝑒

)
(7)

where 𝑆𝐸 is the simple yet effective Squeeze-and-Excitation block
[16] to explicitly model inter-dependencies between channels. After
that, we obtain the local-level representation with the help of video
parsing. Specifically, each frame has 𝐾𝑎 dimensional action concept
confidence and 𝐾𝑒 dimensional entity concept confidence, here we
expect to know which action and entity concepts are associated
with each video rather than each frame. To this end, we introduce
a multiple instance learning (MIL) based mechanism inspired by
[32, 43, 44], which can be presented as follows,

𝑝𝑣𝑎,𝑖 =
1
𝜏

∑
∀𝑧∈𝑍𝑖

𝑧 (8)

where 𝜏 = ⌊𝑁8 ⌋, and 𝑍𝑖 is the set of 𝜏-max frame-level confidence
scores for the 𝑖𝑡ℎ action concept, which is selected from frame-level
action concept confidence 𝑙𝑣𝑎 , and the size of 𝑍𝑖 is 𝜏 . 𝑝𝑣𝑎 is the video-
level action concept confidence given the video𝑉 . For the 𝑖𝑡ℎ action
concept, we obtain the 𝑖𝑡ℎ video-level action concept confidence
𝑝𝑣
𝑎,𝑖

by averaging 𝑍𝑖 . In the similar vein, we obtain 𝑝𝑣𝑒 . Given 𝑝𝑣𝑎
and 𝑝𝑣𝑒 , 𝑁𝑎 and 𝑁𝑒 action and entity concepts with the highest
confidence are selected as the reliable concepts for the video 𝑉 .
For each selected action concept, we select the video clip of size
𝑘 = 5 in 𝑣𝑆𝐸𝑎 which corresponds to the highest confidence, and
employ the average pooling to obtain a feature vector. Through this
operation, we finally obtain the local-level action representation
𝑣𝐿𝑜𝑐𝑎 ∈ R𝑁𝑎×𝐷𝑣 . The main difference between obtaining 𝑣𝐿𝑜𝑐𝑎 and
obtaining local-level entity representation 𝑣𝐿𝑜𝑐𝑒 is that we select
3 frames in 𝑣𝑆𝐸𝑒 , which may not be continuous, corresponding to
the top 3 highest confidences and obtain a feature vector by the
average pooling. By merging adjacent and semantically similar

frames, local-level representations contain more rich information
and capture local range dependencies, they can explicitly align with
nouns and verbs in texts.

To summarize, local-level representation is the aggregation of
several frame-level features corresponding to reliable concepts.
First, we obtain the video-level concept confidence based on frame-
level concept confidence via Equation (8). Then, we select highly
confident action and entity concepts as reliable concepts based
on video-level concept confidence. For each reliable concept, we
choose some highly confident frame features based on the frame-
level concept confidence, and aggregate them to generate the final
local-level representation.

3.2.3 Global-level Representation. For the global event level, we
adopt an attention mechanism to average the frame-level features
as a single global vector 𝑣𝐺𝑙𝑜𝑔 that represents the salient event in
the video, which is presented as follows,

𝑣𝐺𝑙𝑜𝑔 = 𝛼⊤𝑣𝐼𝑛𝑑𝑔 (9)

𝛼 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑣𝐼𝑛𝑑𝑔 𝑊

)
(10)

where 𝛼 is the attention score, and𝑊 is the learnable weight.

3.3 Text Representations
Parallel to video representations, text representations consist of
three levels of granularity, i.e., the individual level corresponds to
the word, the local level corresponds to the context, and the global
level corresponds to the sentence. Three levels of text representa-
tions are used to align with corresponding video representations
in the hierarchical alignment. Formally, given the sentence 𝑆 , we
employ the pre-trained model to extract the word embeddings
𝐹𝑠 = {𝑓 𝑠

𝑖
}𝑀 , then generate three different levels of representations

on top of text parsing.

3.3.1 Individual-level Representation. We utilize an bidirectional
GRU (Bi-GRU) [5] to generate a sequence of contextual-aware word
embeddings as follows,

−−→
𝑠𝐼𝑛𝑑 =

−−−→
𝐺𝑅𝑈

(
𝐹𝑠

)
(11)

←−−
𝑠𝐼𝑛𝑑 =

←−−−
𝐺𝑅𝑈

(
𝐹𝑠

)
(12)

𝑠𝐼𝑛𝑑 =

(−−→
𝑠𝐼𝑛𝑑 +

←−−
𝑠𝐼𝑛𝑑

)
/2 (13)

Based on the text parsing, we select features corresponding to
verbs and nouns as the individual-level representations 𝑠𝐼𝑛𝑑𝑎 ∈
R𝑀

𝑎×𝐷𝑠 and 𝑠𝐼𝑛𝑑𝑒 ∈ R𝑀𝑒×𝐷𝑠 that are subsets of 𝑠𝐼𝑛𝑑 , which cor-
respond to 𝑣𝐼𝑛𝑑𝑎 and 𝑣𝐼𝑛𝑑𝑒 in videos. Meanwhile, we employ the
attention mechanism similar to Equations (9)-(10) to obtain the
global event embedding 𝑠𝐼𝑛𝑑𝑔 for the following local and global-
level representations.

3.3.2 Local and Global-level Representation. We follow the pioneer
work [4] and employ modified relational GCN [34] to obtain local
and global-level representations. To be specific, we gather three
features, i.e., 𝑠𝐼𝑛𝑑𝑔 , 𝑠𝐼𝑛𝑑𝑎 and 𝑠𝐼𝑛𝑑𝑒 , and use 𝑔 ∈ R(1+𝑀𝑎+𝑀𝑒 )×𝐷𝑠 to
denote this feature set, which is initialized node embeddings of
graph. Different semantic roles by text parsing are the edges of
graph.

Poster Session 4 MM ’21, October 20–24, 2021, Virtual Event, China

3521



Here, we only use one GCN layer, which is presented as follows,

𝑔1𝑖 = 𝑔
0
𝑖 +

∑
𝑗 ∈𝑁𝑖

(
𝛽𝑖 𝑗

(
𝑊𝑡 ⊙𝑊𝑟 𝑟𝑖 𝑗

)
𝑔 𝑗

)
(14)

where𝑊𝑡 ∈ R𝐷
𝑠×𝐷𝑠 is the transformation matrix,𝑊𝑟 ∈ R𝐷

𝑠×𝐾𝑟 is
role embedding matrix, 𝐾𝑟 is the number of semantic roles, 𝑁𝑖 is
neighborhood nodes of node 𝑖 , 𝑟𝑖 𝑗 an one-hot vector of length 𝐾𝑟
denoting the edge type from node 𝑖 to 𝑗 , and 𝛽𝑖 𝑗 is the similarity
between node 𝑖 to 𝑗 , which is computed as follows,

𝛽𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝜙 (𝑔𝑖 ) 𝜑

(
𝑔 𝑗

)⊤
√
𝐷𝑠

)
(15)

here 𝜙 (𝑔𝑖 ) = 𝑊𝜙𝑔𝑖 and 𝜑
(
𝑔 𝑗

)
= 𝑊𝜑𝑔 𝑗 are two embeddings. We

refer the reader to [4] for detailed descriptions of the modified
relational GCN.

The outputs from the GCN layer are the final different levels of
representations, which are denoted as 𝑠𝐿𝑜𝑐𝑎 for local-level action
representation, 𝑠𝐿𝑜𝑐𝑒 for local-level entity representation and 𝑠𝐺𝑙𝑜𝑔

for global-level representation. Notably, we do not use the rela-
tional GCN in videos since the semantic role of each entity to the
corresponding action is unknown.

3.4 Hierarchical Alignment
After the aforementioned text encoding and video encoding, we
obtain three levels of representations, namely, individual, local, and
global levels. In this section, we introduce how to hierarchically
align representations at three different level.

3.4.1 Individual Alignment. Since there are multiple components
in the video and text at the individual level, following [4, 6, 20], we
use the stack attention mechanism to align multiple components
and compute the overall similarity score. For the sake of clarity,
we use 𝑣𝐼𝑛𝑑 to denote 𝑣𝐼𝑛𝑑𝑎 and 𝑣𝐼𝑛𝑑𝑒 , in the similar vein, we define
𝑠𝐼𝑛𝑑 . We use cosine similarity to compute similarities between each
pair of cross-modal components 𝑐𝐼𝑛𝑑

𝑖 𝑗
= 𝑐𝑜𝑠

(
𝑣𝐼𝑛𝑑
𝑖

, 𝑠𝐼𝑛𝑑
𝑗

)
. Then we

compute the attention weight that dynamically aligns sentence
words and video frames as follows,

𝛾𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
©­«𝜆[𝑐𝐼𝑛𝑑𝑖 𝑗 ]+/

√∑
𝑗

[𝑐𝐼𝑛𝑑
𝑖 𝑗
]2+

ª®¬ (16)

where 𝜆 is the temperature parameter, [·]+ ≡𝑚𝑎𝑥 (·, 0). The final
similarity summarizes all individual component similarities and is
shown as follows,

𝑐𝐼𝑛𝑑 =
∑
𝑖

©­«
∑
𝑗

𝛾𝑖 𝑗𝑐
𝐼𝑛𝑑
𝑖 𝑗

ª®¬ (17)

More importantly, we introduce the concept-based similarity
based on the concept confidence, where the concept confidence
develops from individual-level representations. For simplicity, we
use 𝑝𝑣 to denote 𝑝𝑣𝑎 and 𝑝𝑣𝑒 . Following [9], we employ generalized
Jaccard similarity to compute the concept-based similarity,

𝑐𝑝 =

∑
𝑖𝑚𝑖𝑛

(
𝑝𝑣
𝑖
, 𝑝𝑠
𝑖

)
∑
𝑖𝑚𝑎𝑥

(
𝑝𝑣
𝑖
, 𝑝𝑠
𝑖

) (18)

where 𝑝𝑠 is denoted 𝑝𝑠𝑎 and 𝑝𝑠𝑒 , which is obtained as in Equation
(8).

3.4.2 Local Alignment. For the local level, we employ the stack
attention mechanism similar to Equations (16)-(17) to obtain 𝑐𝐿𝑜𝑐𝑎

and 𝑐𝐿𝑜𝑐𝑒 .

3.4.3 Global Alignment. At the global event level, the video and
text are encoded into global vectors. We use the cosine similarity
to measure the cross-modal similarity between global video and
global text 𝑐𝐺𝑙𝑜𝑔 = 𝑐𝑜𝑠

(
𝑣𝐺𝑙𝑜𝑔 , 𝑠𝐺𝑙𝑜𝑔

)
.

3.5 Training and Inference.
3.5.1 Training. Once all similarity scores are computed, we obtain
the two similarity between the video 𝑉 and the sentence 𝑆 , that is,

𝑐𝑙 (𝑉 , 𝑆) =
(
𝑐𝐼𝑛𝑑𝑎 + 𝑐𝐼𝑛𝑑𝑒 + 𝑐𝐿𝑜𝑐𝑎 + 𝑐𝐿𝑜𝑐𝑒 + 𝑐𝐺𝑙𝑜𝑔

)
/5 (19)

𝑐𝑝 (𝑉 , 𝑆) =
(
𝑐
𝑝
𝑎 + 𝑐

𝑝
𝑒

)
/2 (20)

The widely used ranking loss with hard negative sampling strat-
egy is used to optimize HANet, here L𝑙 and L𝑝 are presented as
follows,
L𝑙 = [Δ+𝑐𝑙 (𝑉 , 𝑆−)−𝑐𝑙 (𝑉 , 𝑆)]++ [Δ+𝑐𝑙 (𝑉 −, 𝑆)−𝑐𝑙 (𝑉 , 𝑆)]+ (21)

L𝑝 = [Δ + 𝑐𝑝 (𝑉 , 𝑆−) − 𝑐𝑝 (𝑉 , 𝑆)]+ + [Δ + 𝑐𝑝 (𝑉 −, 𝑆) − 𝑐𝑝 (𝑉 , 𝑆)]+
(22)

where (𝑉 , 𝑆) are the positive pair, and 𝑉 − and 𝑆− are the hardest
negatives in a mini-batch.

Besides, we use the binary cross-entropy (BCE) loss for concept
learning,

L𝑎 = − 1
𝐾𝑎

∑
𝑖

(
𝑦𝑎,𝑖𝑙𝑜𝑔

(
𝑝𝑣𝑎

)
+ (1 − 𝑦𝑎,𝑖 )𝑙𝑜𝑔

(
1 − 𝑝𝑣𝑎

) )
− 1
𝐾𝑎

∑
𝑖

(
𝑦𝑎,𝑖𝑙𝑜𝑔

(
𝑝𝑠𝑎

)
+ (1 − 𝑦𝑎,𝑖 )𝑙𝑜𝑔

(
1 − 𝑝𝑠𝑎

) ) (23)

L𝑒 = −
1
𝐾𝑒

∑
𝑖

(
𝑦𝑒,𝑖𝑙𝑜𝑔

(
𝑝𝑣𝑒

)
+ (1 − 𝑦𝑒,𝑖 )𝑙𝑜𝑔

(
1 − 𝑝𝑣𝑒

) )
− 1
𝐾𝑒

∑
𝑖

(
𝑦𝑒,𝑖𝑙𝑜𝑔

(
𝑝𝑠𝑒

)
+ (1 − 𝑦𝑒,𝑖 )𝑙𝑜𝑔

(
1 − 𝑝𝑠𝑒

) ) (24)

where 𝑦𝑎 and 𝑦𝑒 are the ground-truth.
The overall loss is the combination of aforementioned losses,

which is shown as follows,
L𝑡𝑜𝑡𝑎𝑙 = L𝑙 + 𝜂L𝑝 + 𝜇 (L𝑎 + L𝑒 ) (25)

where 𝜂 and 𝜇 is the trade-off hyper-parameters.

3.5.2 Inference. we simply take the average of 𝑐𝑝 (𝑉 , 𝑆) and 𝑐𝑙 (𝑉 , 𝑆)
as the final video-text similarity between 𝑉 and 𝑆 for video-text
retrieval.

4 EXPERIMENTS
In this section, we first introduce two datasets (MSR-VTT [45]
and VATEX [38]) performed in our experiments. Then we compare
our HANet with recent state-of-the-art methods and analyze its
effectiveness. We also investigate each component in our HANet
by ablation studies.

Poster Session 4 MM ’21, October 20–24, 2021, Virtual Event, China

3522



Table 1: Comparisons with the state-of-the-art methods on the MSR-VTT dataset.

Method Text-to-Video Video-to-Text SumRR@1 R@5 R@10 MdR R@1 R@5 R@10 MdR
VSE [18] 5.0 16.4 24.6 47 7.7 20.3 31.2 28 105.2
VSE++ [10] 5.7 17.1 24.8 65 10.2 25.4 35.1 25 118.3
Mithum et al. [29] 5.8 17.6 25.2 61 10.5 26.7 35.9 25 121.7
W2VV [7] 6.1 18.7 27.5 45 11.8 28.9 39.1 21 132.1
Dual Encoding [8] 7.7 22.0 31.8 32 13.0 30.8 43.3 15 148.6
TCE [48] 7.7 22.5 32.1 30 - - - - -
Zhao et al.[51] 8.8 25.5 36.5 22 14.0 33.1 44.9 14 162.8
HGR [4] 9.2 26.2 36.5 24 15.0 36.7 48.8 11 172.4
HANet 9.3 27.0 38.1 20 16.1 39.2 52.1 9 181.8

Table 2: Comparisons with the state-of-the-art methods on the VATEX dataset.

Method Text-to-Video Video-to-Text SumRR@1 R@5 R@10 MdR R@1 R@5 R@10 MdR
W2VV [7] 14.6 36.3 46.1 - 39.6 69.5 79.4 - 285.5
VSE++ [10] 31.3 65.8 76.4 - 42.9 73.9 83.6 - 373.9
CE [25] 31.1 68.7 80.2 - 41.3 71.0 82.3 - 374.6
W2VV++ [22] 32.0 68.2 78.8 - 41.8 75.1 84.3 - 380.2
Dual Encoding [8] 31.1 67.4 78.9 - - - - - -
HGR [4] 35.1 73.5 83.5 - - - - - -
HSL [9] 36.8 73.6 83.7 - 46.8 75.7 85.1 - 401.7
HANet 36.4 74.1 84.1 2 49.1 79.5 86.2 2 409.4

4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. MSR-VTT dataset [45] is composed of 10000 video
clips with 20 text descriptions per clip. We follow the official data
split, where 6573, 497 and 2990 videos are used for training, valida-
tion and testing, respectively. VATEX dataset [38] is a large-scale
bilingual video description dataset, each clip is accompanied by 10
English text descriptions and 10 Chinese text descriptions. Here, we
only use the English text descriptions. Following the partition pro-
vided by [4, 9], we use 25991 video clips for training, 1500 clips for
validation and 1500 clips for testing, where validation and test sets
are obtained from the official validation set since the annotations
on test set are private.

4.1.2 Evaluation Metrics. Following prior works, we report the
results using the rank-based performance metric, i.e., Recall at K
(R@K, K=1, 5, 10, higher is better), Median Rank (MdR, lower is
better), and Sum of all Recalls (SumR, higher is better) to measure
the overall performance.

4.2 Implementation Details
4.2.1 Video-Text Features. For fair comparison, we apply the same
feature in our HANet to all the compared methods. For MSR-VTT,
we utilize the visual feature provided by [4] with dimension of 2048,
which is extracted with ResNet152 pre-trained on ImageNet [14].
For VATEX, we use the officially provided I3D [1] video feature.
For the text features on both MSR-VTT and VATEX, we set the
word embedding size as 300 and initialize with pre-trained Glove
embeddings [33].

4.2.2 Concept Vocabulary. The concept vocabulary is constructed
from all training sentences. Specifically, we first remove all English
stop-words and punctuations, and use NLTK toolkit 1 to find the
part-of-speech tags. After that, only nouns and verbs are retained,
which correspond to the entities and actions, respectively. To avoid
duplication of concepts, we also lemmatize these nouns and verbs by
NLTK. Finally, the top 𝐾𝑎 =512 frequent verbs and 𝐾𝑒 =1024 nouns
are selected as the final action and entity concept vocabularies,
respectively. Based on data statistics of training samples, we found
that the top 𝐾𝑎 =512 frequent verbs and 𝐾𝑒 =1024 nouns cover the
vast majority of high-frequency words.

4.2.3 Training. We implement HANet using PyTorch 2 on the
NVIDIA V100 GPU. We use Adam [17] to optimize HANet, with
learning rate of 1e-4 and batch size of 64. The maximal number
of epochs is set to 50, and early stop occurs if the validation per-
formance (SumR) does not improve in ten consecutive epochs. As
for hyper-parameters, 𝑁𝑎 and 𝑁𝑒 are set to 10 and 20 respectively
based on data statistics of training samples. The weight 𝜂 and 𝜇 in
the combined losses is empirically set to 0.1 and 0.01, respectively.
Following [4], the temperature parameter 𝜆 is set to 4, and the
margin Δ is set to 0.2.

4.3 Comparison with State-of-the-Art Methods
We compare our HANet with state-of-the-art methods on the MSR-
VTT and VATEX datasets. Notably, all comparison methods take

1http://www.nltk.org
2https://pytorch.org
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Table 3: Ablation studies on the MSR-VTT dataset to investigate the effectiveness of hierarchical alignment.

Individual Local Global Text-to-Video Video-to-Text SumRAlignment Alignment Alignment R@1 R@5 R@10 MdR R@1 R@5 R@10 MdR√
8.6 25.7 36.4 23 14.1 36.4 48.6 11 169.8√
8.4 24.6 34.9 25 13.2 35.2 47.0 12 163.3√
8.4 24.9 35.6 24 14.3 33.9 46.1 13 163.2√ √
9.2 26.7 37.6 21 15.6 38.8 51.4 10 179.3√ √
9.1 26.6 37.8 21 15.5 38.0 50.6 10 177.6√ √
8.6 25.3 36.2 23 13.6 35.6 48.0 11 167.3√ √ √
9.3 27.0 38.1 20 16.1 39.2 52.1 9 181.8

Table 4: Ablation studies on the MSR-VTT dataset to investigate the effectiveness of SeMe and relational GCN.

Model Text-to-Video Video-to-Text SumRR@1 R@5 R@10 MdR R@1 R@5 R@10 MdR
FC→ SeMe 9.2 26.7 37.8 21 14.7 38.3 50.9 10 177.6
FC→ relational GCN 8.9 26.6 37.6 21 14.9 38.1 50.7 10 176.8
HANet 9.3 27.0 38.1 20 16.1 39.2 52.1 9 181.8

the same visual feature as input. The comparison results on the
MSR-VTT are shown in Table 1. We observe that HANet achieves
significant performance improvements over comparison methods
on text-to-video and video-to-text retrieval tasks. All baselines ex-
cept HGR [4] only use the global features to compute the similarity
between the video and text. HGR is similar to our HANet among
these baselines, which also decomposes the text and aligins the
video and text in a global-to-local fashion. Compared with HGR,
our HANet is equipped with concept-guiding video parsing, and
aligns videos and texts in a more fine-grained and more precise
fashion, i.e., individual level (frame and word), local level (clip and
phrase), and global level (video and sentence). As a consequence,
HANet significantly outperforms HGR in all evaluation metrics,
especially, boosts the overall retrieval quality by a margin of 9.4 in
SumR.

To demonstrate the reliability of HANet, we also carry out ex-
periments on another dataset, i.e., VATEX, using different visual
features I3D. From results in Table 2, it is also easy to notice that
HANet outperforms other existing methods by a large margin. Here
HSL [9] stresses the importance of video-text representation and
also uses different semantic levels of features. However, HSL simply
concatenates all levels of features and overlooks the hierarchical
alignment.

4.4 Ablation Studies
In this section, we conduct experiments on the MSR-VTT to verify
the effectiveness of each component in HANet.

4.4.1 Effectiveness of Hierarchical Alignment. We first investigate
the effectiveness of hierarchical alignment. The results of using
different alignments of our HANet are shown in Table 3. As we can
see that, only using a single alignment achieves worse performance.
In particular, only using global alignment is similar to most previ-
ous works that simply use a single representation, which results in

an obvious drop of 18.6 in terms of SumR. It convincingly demon-
strates the improvement contributed by the proposed hierarchical
alignment which provides more fine-grained information. Besides,
we notice that any combination of two different alignments can gain
performance improvements, which demonstrates all three align-
ments are effective. Finally, the combination of all three alignments
further improves performance, which demonstrates individual, lo-
cal and global-level information are complementary.

4.4.2 Effectiveness of Local-level Representation. Here we use two
FC layers to replace our designed SeMe module in terms of video
and relational GCN in terms of text, respectively. We show results in
Table 4. Comparedwith HANet, they both suffer performance degra-
dation, which convincingly demonstrates that, 1) video contextual
information is introduced by selecting and merging concept-based
relevant frames in our SeMe module; 2) text contextual information
is also captured by relational GCN.

4.5 Qualitative Analyses
4.5.1 Visualization of the Text-to-Video Retrieval. We visualize sev-
eral examples on the MSR-VTT test set for text-to-video retrieval
in Figure 3. In the left and middle samples, our HANet successfully
retrieve the correct video given query. The right sample shows an
ambiguous case, where all top 3 retrieved videos present a scene of
"two teams playing volleyball". We argue that this was caused by
the instance-based assumption [40] in current video-text retrieval,
namely only a single video is relevant to a query. In fact, these three
videos can be deemed equally relevant.

4.5.2 Visualization of Action- and Entity-level Concept. Since video
parsing in HANet is based on the concept-based classification, in
this part, we visualize some examples of concept prediction at the
video and frame-level. In Figure 4, we observe that some relevant
concepts are predicted with high confidence, for example, "play",
"soccer" in the example of the top right corner. However, there
are also some irrelevant predicted concepts, such as "tennis" and
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Query: A girl playing guitar and singing a song. Query: An adult brown horse stand in the barn and
his father horse jumps a barrier and his mother 
horse lay his head toward ground and walking.

Query: two teams playing volleyball.

Figure 3: Top 3 text-to-video retrieval examples on the MSR-VTT test set. (green box: correct; gray box: incorrect)

Figure 4: Examples of concept prediction in video parsing. Four different videos are taken from the MSR-VTT test set. Bigger
font meaning larger predicted scores in each sample. (green: action concepts; blue: entity concepts)

Sing
Perform
Talk

0.32 0.51 0.00 0.75 0.49 0.86 1.00 1.00 0.97 0.84

0.03 0.12 0.00 0.13 0.24 0.35 1.00 0.96 0.90 0.45

0.68 1.00 0.51 0.85 0.99 0.00 0.04 0.06 0.06 0.10

1.00 0.99 0.87 0.93 0.00 0.99 0.98 0.92 0.99 0.86Woman
Girl
Man
Judge

1.00 0.87 0.62 0.90 0.00 0.99 0.95 0.82 0.99 0.87

0.04 0.02 0.01 0.02 1.00 0.01 0.01 0.03 0.00 0.04

0.37 0.71 1.00 0.00 0.60 0.11 0.06 0.40 0.43 0.06

Action

Entity

Figure 5: Examples of concept prediction of video frames in video parsing. A video is taken from the MSR-VTT test set. We
normalize the concept confidence to [0,1] for each concept.

"throw". In general, concepts predicted by HANet are reasonable,
and helpful for understanding the cross-modal retrieval.

The frame-level concept prediction is shown in Figure 5, we
highlight the areas with higher concept confidence in red. For the
action concept, since we take as input the 5-frame clip to obtain the
confidence of action concept, actions, e.g., "talk", "sing", contained in
consecutive frames are retrieved. Intriguingly, based on the frame-
level concept confidence, not only "woman", "girl" and "man" are
retrieved, but also the "judge" that is gender-neutral is retrieved.
which demonstrates the reliability of MIL based mechanism in
Equation (8) for weakly supervised concept classification as well as
the practicability of SeMe module.

5 CONCLUSION
In this paper, we propose the hierarchical alignment network (HANet)
to make full use of complementary information of different seman-
tic levels of representations for video-text retrieval. To this end, we

first parse the video and text by concept-based weakly supervised
classification and existing text parsing toolkit, respectively. Then
we introduce the hierarchical alignment to align representations at
the individual, local and global levels for computing cross-modal
similarity. The quantitative and qualitative results on two popular
text-video retrieval benchmarks significantly demonstrate the ef-
fectiveness of HANet. In the future, the more precise and efficient
hierarchical alignment is yet to be explored since pairwise matching
is relatively expensive.
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